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ABSTRACT

• This report discusses the theoretical impossibility of

deducing the surface reflectivity of a rotating illuminated body

from its ].ightcurve . We first derive the lightcurve for an

arbitrary convex body as an expansion in spherical harmonics.

From the form of the resulting lightcurve and its Fourier series

the negative result follows immediately .
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I. INTRODUCTION

The analysis of the lightcurve of a rotating body is a

topic of long standing in astronomy. The natural satellites

of the other planets and the minor planets have been investigated

in this fashion. The primary aim has been to deduce the

surface reflectivity from the lightcurve so that a deeper

analysis of the object may be successful. There is a result

*
due to Russell concerning the impossibility of deducing the

surface reflectivity from the lightcurve. For the natural

satellites this constraint is of little importance because

the most sophisticated model would be an airless triaxial

ellipsoid. Data acquired by spacecraft have shown that for

some moons this is not true , but then we have the flyby data

to aid in our analysis.

In the case of artificial satellites , particularly

those covered by solar cells, high order symmetries may

exist in the surface reflectivity . As we shall see below

these may be impossible to discover from only the lightcurve.

We expand on Russell’s result and fill in some gaps in his

analysis. We also derive the Fourier series (in time) of

the lightcurve.

*H N. I~.issel1, Astrophys. 3. 24 , 1, (1906) .
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1 :
II. A SPHERICAL BODY

Let r , 0, $ be a spherical coordinate system with origin

at the center of the sphere: r is the distance from the origin,

o is the colatitude, and • is the azimuth. Let B(0,$) be the
*

intrinsic brightness of an element of area dS(0,~~) of the

surface. Let y(0,~ ) be the angle between the outward normal

to dS and the line of sight to the observer. Finally , let

R(G,~ ) be the distance between dS and the observer. The amount

of light received by the observer from dS is its brightness

multiplie6 by its apparent area divided by the square of its

distance; viz.,

dL = BcosydS/R2. (la)

The total light received by the observer is the sum of all such

contributions for which cosy>o (e.g., that dS is visible),

L = JBcosyH (cosy)dS/R2, (ib)

where 11(u) is the Heaviside function

1 U)O 2H~u, — 

0 u<o

*The magnitude is related to the brightness by m = -2.5Log(B)
+ constant.

• 
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If the radius of the sphere is a and a<<min1R(O ,~~)1 then

L (l/R2)fBcosyH(cosy )dS, (3)

where R is now the distance from the center of the sphere to the

observer and cosy = r . R /(rR). The vector R = (R ,G,~~)

where 0 is the observer’s colatitude and ~ is his azimuth

(the vertex of y is now at the origin). Since

cosy = cosOcosO + sin0sinOcos(4—~ ), (4)

and

ds(9,4) = a2sin0d0d~ , (5)

2 ri 2w
L = (a /R2)f0d0f03(0,4)cosyH(cosy)sined4 . (6)

Clearly L = a2 (function of 0,~ )/R
2.

To pursue the analysis further we now assume that B(O ,~ ) is

non-negative, everywhere bounded , has a finite number of

extrema , and a finite number of points or curves of discontinuity.

These conditions (known as Dirichiet conditions) pose no

practical limitations on the form of B. They do assure us

that the series expansion for B, in a series of spherical

harmonics, converges. For reference we define the spherical

• 
• harmonics {Yem (O~~

)} in terms of the associated Legendre

functions (P~
’(cos0)} and exponentials {exp(im$)} by

3
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1/2
= [2z + i 

~~ ~~]p~ (cosO)exp(im$), (7a)

(u ’i (1)m(1 — U
2 ) m12 cit + rn(U2 — 

, (7b)
2 F ( t + l) - du m

= (...1)m (1 - u2)m/2dmp~ (u)/du
m, (7c)

P
-m

(U) = (_l)mr(.e - rn + 1) P~~(u)/r(e + m + 1), (7d)

(—u) = (~1) t + mPxn (U) , (7e)

P~~(l) = 6mo = otherwise ‘

— in~~° ’~~~ 
= (_1)m~~~ (0 ,4), (7g)

where r (U) is the gamma function and (u) is the Legendre

polynomial of order t.

We write B (O ,i~) as

~
B ( 9 ,4 )  = ~ B~~~Y~~~(8 ,~~) ,  (8a)

• 1=0 m=-t

where

B~~~ = fodef~~sinoY;m
(o,,)B(o ,,)d,, (8b)

and the asterisk denotes complex conjugation. We substitute

4
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expression (8a) into Eq. (6) and deal with the Heaviside function

by expressing Y~~~(O ,+)  in terms of y and A.  The auxiliary angle

A is the position angle of dS, relative to the origin , as seen by

the observer after the surface is projected onto the plane of the

sky. From the properties of the rotation group of the spherical

harmonics we can write

I
= ~~~A1 Y1 (Y,A) . (9a)

However , from Eq. (4), if 0 = 0 and 4, = 
~~~, 

y = 0. From Eq. (7f)

it now follows that

= A10. (9b)

We now use Eqs. (6 , 8a , 9a , and 9b) to write the t’th order

term for L as [cf. Eq. (11)]

= (a2/R2)~~~~ B~~ J0 dA f0
” sinycosy [Y~~ (0,~~)Y10(y,A )

I
(1 nofld~~ (lOa)

From Eq. (7a) we see that the result of the A intergral is

2w~~~0 so

5
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= (2w a 2/R 2 )
~~~~~BimY~~~

(0 ,
~~) f ~

”2 sinycosyYto (y t A ) d y , (lOb)

where

[2~~
+ l]l’2Po( ) =[~ 

i] P1(cosy). (lOc)

If we set II equal ‘to the integral in Eq. (lOb) then

= (2wa 2It/R2)
~~~~

BtmY1m(0,~~), (lOd)

and,

L = ~~L1 
= (2wa 2/R2)

~~~~
It Y B tmY~~~(0 ,

~~
). (11)

Equation (11) is our final result giving L as a function of the

(B1
} and the observer ’s location R.

The last step is the evaluation of the integrals 
~
II}. This

is done by using the Rodrigues formula for the Legendre poly-

nomials [cf. Eqs. (7b, 7c)] and the change of variable u = cosy.

We f ind

6
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[~~+li/2 II = f~uP1(u)du =rl/2 if I = 0

• l/3 i f I = l

1/8 if I = 2 (12)

0 if lis odd and ?3
I

• 2 + 1
1(—1) 

(1 ~
(
2
~~

1
~~~U if I iseven and �4,

where the double factorial is defined by

(2 k ) ! !  = 2~r(k + 
~~~ k = 0, 1, 2,... (13)

(2k + 1)!! = ~ (2k + 2)/[2kr(k + 1)]

There are two conclusions we can immediately draw from

Eq. (12); first for non-zero values of I
I

I’ll 1(1 + 2) ~ —~
--Y1,2 , (14)

so , since the series for B [Eq . (8a) ] converges , the series for

L [Eq. (11)] converges uniformly and absolutely . Hence, L is a

continuous function of R and ‘7RL is continuous even if B is dis-

continuous. Secondly , since all of the higher order odd harmonics

are absent, there exists a denumerable set of different ref lec-

tivities all of which yield the identical light curve.

7
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III. EXTENSION TO ANY CONVEX SURFACE

The simplest two-dimensional surface to discuss is one

whose equation is given in the form z = f (x ,y). However, we

will use the parametric representation r = [x(0,4,), y(O ,4,),

z ( 0 ,4,)]. We assume (i) r(0,4,) is a single valued function ,

(i i)  ar/aG and ar/a4 ,  both exist and are continuous, and (ii i)

ar ar
x is not null (i.e., the vector cross product).

The element of arc-length , ds , on the surface is given by

2 ar
ds = dr dr , dr = -

~
-

~~- dO + -~~~~~ d4,, (15a)

or ,

ds 2 
= Edo2 + 2FdOd~ + ~~~~ (15b)

where
ar

E =  -
~~~~

- , (l6a)

ar ar
F = (= 0 here) , (l6b)

G = .

~~~~~~

. (l6c)

The element of area , dS , of the surface is proportional 

to8
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1
ar ~r 1x ~~~~~~ . Since, for any two vectors u and v,

x v~
2 

= k’1 2 1v 1 2 
— (u v)2 , (17)

dS can be written as

dS = (EG—F2)1”2dOd4,. (18)

Finally, define a quantity C (which is essentially a curvature)

by

C = r2sinO/ (EG — F2)1’~
’2. (19)

Then the expression for L is

L = f
2’
~f’~(B/C)cosyH(cosy)sin0d4,dO/R2, (20 )

in analogy with Eq. (lb). If max(1r1 2)<< mm (I~ I 2) then
0,4, 2 2we may again bring the factor of a /R outside of the integral,

redefining R and y as in §11, and proceed exactly as before

except the {Btm} are now interpreted as the expansion coefficients

of B/C. Only if C vanishes will our previous results be

invalid. The restriction to convex 8urfaces precludes this

possibility.

We might inquire as to the lightcurve of an arbitrary

convex body with a constant surface brightness. From the

I - discussion above the answer is again given by Eq. (11)

(after reinterpretating the 
~
Btm)) ..xcept there can be no I 1

term. This follows from the parity of the spherical harmonics,

Eq. (7g) .

9



IV. THE FOURIER SERIES FOR THE LIGHTCURVE

As the orientation of the r ,0 ,4 ,  coordinate system is at our

disposal we now choose the polar axis to be the axis of uniform

rotation. If the body is precessing then the polar axis is the

instantaneous axis of rotation. The observer ’s colatitude is

a constant equal to the inclination of the axis of rotation to

the line of sight. The observer ’s azimuth is simply

= w(t - t0) where w is the angular speed of rotation and to is

the instant of a prime meridian crossing . Using this in Eq. (11)

and rearranging terms (which is permissible because the series

converges absolutely) we obtain

L = 

(:~~~~

2

~~~~

2 
C

0
(0 )/ 2  + 

n~1 
C (0)cos[nw(t - t0)]

+ ~ S (O)sin [nw(t — t ) ] } , (2 1)
n=l n 0

with

C0(0) = 2 ~ 
IkBkOPk(cosO), (22a)

k=o

fl 
= 

~~~~~k k n k + Bk_ flP;’ (Coso) ] .  n’o ( 22b)

Sn = 
~~ 

iIk[BkflP~~
(cosO) - Bk_ flP~~~(cos0fl , n ’o. (22c )

k n

From Eqs. (7g, 8b), Bk_n (_l)
~
B
~n •

10 4
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V. THE INVERSE PROBLEM

As we mentioned above there exist an infinite number of

different B’s all of which yield the same L. Clearly then,

given L it is impossible to determine B uniquely. My

additional physical constraints we might want to impose on B

(i.e., its non—negativity , continuity, various symmetry

properties, etc.) can serve to limit our ignorance but not

overcome it. The problem is simply indeterminate. As this

is the case when a complete set of functions is used the situation

will be even worse if some other, incomplete basis is used.

• -

H /  tY~Xi~~/
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